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Abstract

We present a discriminative model for
single-document summarization that
integrally combines compression and
anaphoricity constraints. Our model
selects textual units to include in the
summary based on a rich set of sparse
features whose weights are learned on a
large corpus. We allow for the deletion
of content within a sentence when that
deletion is licensed by compression rules;
in our framework, these are implemented
as dependencies between subsentential
units of text. Anaphoricity constraints
then improve cross-sentence coherence
by guaranteeing that, for each pronoun
included in the summary, the pronoun’s
antecedent is included as well or the
pronoun is rewritten as a full mention.
When trained end-to-end, our final sys-
tem1 outperforms prior work on both
ROUGE as well as on human judgments
of linguistic quality.

1 Introduction

While multi-document summarization is well-
studied in the NLP literature (Carbonell and Gold-
stein, 1998; Gillick and Favre, 2009; Lin and
Bilmes, 2011; Nenkova and McKeown, 2011),
single-document summarization (McKeown et al.,
1995; Marcu, 1998; Mani, 2001; Hirao et al.,
2013) has received less attention in recent years
and is generally viewed as more difficult. Con-
tent selection is tricky without redundancy across
multiple input documents as a guide and sim-
ple positional information is often hard to beat
(Penn and Zhu, 2008). In this work, we tackle
the single-document problem by training an ex-
pressive summarization model on a large nat-

1Available at http://nlp.cs.berkeley.edu

urally occurring corpus—the New York Times
Annotated Corpus (Sandhaus, 2008) which con-
tains around 100,000 news articles with abstrac-
tive summaries—learning to select important con-
tent with lexical features. This corpus has been
explored in related contexts (Dunietz and Gillick,
2014; Hong and Nenkova, 2014), but to our
knowledge it has not been directly used for single-
document summarization.

To increase the expressive capacity of our
model we allow more aggressive compression of
individual sentences by combining two different
formalisms—one syntactic and the other discur-
sive. Additionally, we incorporate a model of
anaphora resolution and give our system the abil-
ity rewrite pronominal mentions, further increas-
ing expressivity. In order to guide the model, we
incorporate (1) constraints from coreference en-
suring that critical pronoun references are clear in
the final summary and (2) constraints from syntac-
tic and discourse parsers ensuring that sentence re-
alizations are well-formed. Despite the complex-
ity of these additional constraints, we demonstrate
an efficient inference procedure using an ILP-
based approach. By training our full system end-
to-end on a large-scale dataset, we are able to learn
a high-capacity structured model of the summa-
rization process, contrasting with past approaches
to the single-document task which have typically
been heuristic in nature (Daumé and Marcu, 2002;
Hirao et al., 2013).

We focus our evaluation on the New York Times
Annotated corpus (Sandhaus, 2008). According to
ROUGE, our system outperforms a document pre-
fix baseline, a bigram coverage baseline adapted
from a strong multi-document system (Gillick and
Favre, 2009), and a discourse-informed method
from prior work (Yoshida et al., 2014). Impos-
ing discursive and referential constraints improves
human judgments of linguistic clarity and ref-
erential structure—outperforming the method of
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Figure 1: ILP formulation of our single-document summarization model. The basic model extracts a set of textual units with
binary variables xUNIT subject to a length constraint. These textual units u are scored with weights w and features f . Next, we
add constraints derived from both syntactic parses and Rhetorical Structure Theory (RST) to enforce grammaticality. Finally,
we add anaphora constraints derived from coreference in order to improve summary coherence. We introduce additional binary
variables xREF that control whether each pronoun is replaced with its antecedent using a candidate replacement rij . These are
also scored in the objective and are incorporated into the length constraint.

Yoshida et al. (2014) and approaching the clar-
ity of a sentence-extractive baseline—and still
achieves substantially higher ROUGE score than
either method. These results indicate that our
model has the expressive capacity to extract im-
portant content, but is sufficiently constrained to
ensure fluency is not sacrificed as a result.

Past work has explored various kinds of struc-
ture for summarization. Some work has focused
on improving content selection using discourse
structure (Louis et al., 2010; Hirao et al., 2013),
topical structure (Barzilay and Lee, 2004), or re-
lated techniques (Mithun and Kosseim, 2011).
Other work has used structure primarily to re-
order summaries and ensure coherence (Barzilay
et al., 2001; Barzilay and Lapata, 2008; Louis and
Nenkova, 2012; Christensen et al., 2013) or to
represent content for sentence fusion or abstrac-
tion (Thadani and McKeown, 2013; Pighin et al.,
2014). Similar to these approaches, we appeal
to structures from upstream NLP tasks (syntactic
parsing, RST parsing, and coreference) to restrict
our model’s capacity to generate. However, we go
further by optimizing for ROUGE subject to these
constraints with end-to-end learning.

2 Model

Our model is shown in Figure 1. Broadly, our
ILP takes a set of textual units u = (u1, . . . , un)
from a document and finds the highest-scoring
extractive summary by optimizing over variables

xUNIT = xUNIT
1 , . . . , xUNIT

n , which are binary in-
dicators of whether each unit is included. Tex-
tual units are contiguous parts of sentences that
serve as the fundamental units of extraction in
our model. For a sentence-extractive model, these
would be entire sentences, but for our compressive
models we will have more fine-grained units, as
shown in Figure 2 and described in Section 2.1.
Textual units are scored according to features f
and model parameters w learned on training data.
Finally, the extraction process is subject to a length
constraint of k words. This approach is similar
in spirit to ILP formulations of multi-document
summarization systems, though in those systems
content is typically modeled in terms of bigrams
(Gillick and Favre, 2009; Berg-Kirkpatrick et al.,
2011; Hong and Nenkova, 2014; Li et al., 2015).
For our model, type-level n-gram scoring only
arises when we compute our loss function in max-
margin training (see Section 3).

In Section 2.1, we discuss grammaticality con-
straints, which take the form of introducing de-
pendencies between textual units, as shown in Fig-
ure 2. If one textual unit requires another, it can-
not be included unless its prerequisite is. We will
show that different sets of requirements can cap-
ture both syntactic and discourse-based compres-
sion schemes.

Furthermore, we introduce anaphora constraints
(Section 2.2) via a new set of variables that capture
the process of rewriting pronouns to make them



Ms. Johnson, dressed in jeans  and a sweatshirt  , is a claims adjuster  with Aetna  .
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Figure 2: Compression constraints on an example sentence. (a) RST-based compression structure like that in Hirao et al.
(2013), where we can delete the ELABORATION clause. (b) Two syntactic compression options from Berg-Kirkpatrick et al.
(2011), namely deletion of a coordinate and deletion of a PP modifier. (c) Textual units and requirement relations (arrows) after
merging all of the available compressions. (d) Process of augmenting a textual unit with syntactic compressions.

explicit mentions. That is, xREF
ij = 1 if we should

rewrite the jth pronoun in the ith unit with its an-
tecedent. These pronoun rewrites are scored in the
objective and introduced into the length constraint
to make sure they do not cause our summary to
be too long. Finally, constraints on these variables
control when they are used and also require the
model to include antecedents of pronouns when
the model is not confident enough to rewrite them.

2.1 Grammaticality Constraints
Following work on isolated sentence compression
(McDonald, 2006; Clarke and Lapata, 2008) and
compressive summarization (Lin, 2003; Martins
and Smith, 2009; Berg-Kirkpatrick et al., 2011;
Woodsend and Lapata, 2012; Almeida and Mar-
tins, 2013), we wish to be able to compress sen-
tences so we can pack more information into a
summary. During training, our model learns how
to take advantage of available compression options
and select content to match human generated sum-
maries as closely possible.2 We explore two ways
of deriving units for compression: the RST-based
compressions of Hirao et al. (2013) and the syntac-
tic compressions of Berg-Kirkpatrick et al. (2011).

RST compressions Figure 2a shows how to de-
rive compressions from Rhetorical Structure The-
ory (Mann and Thompson, 1988; Carlson et al.,
2001). We show a sentence broken into elemen-

2The features in our model are actually rich enough to
learn a sophisticated compression model, but the data we
have (abstractive summaries) does not directly provide ex-
amples of correct compressions; past work has gotten around
this with multi-task learning (Almeida and Martins, 2013),
but we simply treat grammaticality as a constraint from up-
stream models.

tary discourse units (EDUs) with RST relations
between them. Units marked as SAME-UNIT must
both be kept or both be deleted, but other nodes in
the tree structure can be deleted as long as we do
not delete the parent of an included node. For ex-
ample, we can delete the ELABORATION clause,
but we can delete neither the first nor last EDU.
Arrows depict the constraints this gives rise to in
the ILP (see Figure 1): u2 requires u1, and u1 and
u3 mutually require each other. This is a more con-
strained form of compression than was used in past
work (Hirao et al., 2013), but we find that it im-
proves human judgments of fluency (Section 4.3).

Syntactic compressions Figure 2b shows two
examples of compressions arising from syntactic
patterns (Berg-Kirkpatrick et al., 2011): deletion
of the second part of a coordinated NP and dele-
tion of a PP modifier to an NP. These patterns were
curated to leave sentences as grammatical after be-
ing compressed, though perhaps with damaged se-
mantic content.

Combined compressions Figure 2c shows the
textual units and requirement relations yielded by
combining these two types of compression. On
this example, the two schemes capture orthogo-
nal compressions, and more generally we find that
they stack to give better results for our final sys-
tem (see Section 4.3). To actually synthesize tex-
tual units and the constraints between them, we
start from the set of RST textual units and intro-
duce syntactic compressions as new children when
they don’t cross existing brackets; because syntac-
tic compressions are typically narrower in scope,
they are usually completely contained in EDUs.



Figure 2d shows an example of this process: the
possible deletion of with Aetna is grafted onto the
textual unit and appropriate requirement relations
are introduced. The net effect is that the textual
unit is wholly included, partially included (with
Aetna removed), or not at all.

Formally, we define an RST tree as Trst =
(Srst, πrst) where Srst is a set of EDU spans (i, j)
and π : S → 2S is a mapping from each EDU span
to EDU spans it depends on. Syntactic compres-
sions can be expressed in a similar way with trees
Tsyn. These compressions are typically smaller-
scale than EDU-based compressions, so we use
the following modification scheme. Denote by
Tsyn(kl) a nontrivial (supports some compression)
subtree of Tsyn that is completely contained in an
EDU (i, j). We build the following combined
compression tree, which we refer to as the aug-
mentation of Trst with Tsyn(kl):

Tcomb = (S ∪ Ssyn(kl) ∪ {(i, k), (l, j)}, πrst ∪ πsyn(kl)∪
{(i, k)→ (l, j), (l, j)→ (i, k), (k, l)→ (i, k)})

That is, we maintain the existing tree structure ex-
cept for the EDU (i, j), which is broken into three
parts: the outer two depend on each other (is a
claims adjuster and . from Figure 2d) and the in-
ner one depends on the others and preserves the
tree structure from Tsyn. We augment Trst with all
maximal subtrees of Tsyn, i.e. all trees that are not
contained in other trees that are used in the aug-
mentation process.

This is broadly similar to the combined com-
pression scheme in Kikuchi et al. (2014) but we
use a different set of constraints that more strictly
enforce grammaticality.3

2.2 Anaphora Constraints
What kind of cross-sentential coherence do we
need to ensure for the kinds of summaries our
system produces? Many notions of coherence
are useful, including centering theory (Grosz et
al., 1995) and lexical cohesion (Nishikawa et al.,
2014), but one of the most pressing phenomena to
deal with is pronoun anaphora (Clarke and Lapata,
2010). Cases of pronouns being “orphaned” dur-
ing extraction (their antecedents are deleted) are

3We also differ from past work in that we do not use cross-
sentential RST constraints (Hirao et al., 2013; Yoshida et al.,
2014). We experimented with these and found no improve-
ment from using them, possibly because we have a feature-
based model rather than a heuristic content selection proce-
dure, and possibly because automatic discourse parsers are
less good at recovering cross-sentence relations.
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Figure 3: Modifications to the ILP to capture pronoun coher-
ence. It, which refers to Kellogg, has several possible an-
tecedents from the standpoint of an automatic coreference
system (Durrett and Klein, 2014). If the coreference sys-
tem is confident about its selection (above a threshold α on
the posterior probability), we allow for the model to explic-
itly replace the pronoun if its antecedent would be deleted
(Section 2.2.1). Otherwise, we merely constrain one or more
probable antecedents to be included (Section 2.2.2); even if
the coreference system is incorrect, a human can often cor-
rectly interpret the pronoun with this additional context.

relatively common: they occur in roughly 60% of
examples produced by our summarizer when no
anaphora constraints are enforced. This kind of
error is particularly concerning for summary inter-
pretation and impedes the ability of summaries to
convey information effectively (Grice, 1975). Our
solution is to explicitly impose constraints on the
model based on pronoun anaphora resolution.4

Figure 3 shows an example of a problem case.
If we extract only the second textual unit shown,
the pronoun it will lose its antecedent, which in
this case is Kellogg. We explore two types of con-
straints for dealing with this: rewriting the pro-
noun explicitly, or constraining the summary to in-
clude the pronoun’s antecedent.

2.2.1 Pronoun Replacement
One way of dealing with these pronoun reference
issues is to explicitly replace the pronoun with
what it refers to. This replacement allows us to
maintain maximal extraction flexibility, since we

4We focus on pronoun coreference because it is the most
pressing manifestation of this problem and because existing
coreference systems perform well on pronouns compared to
harder instances of coreference (Durrett and Klein, 2013).



can make an isolated textual unit meaningful even
if it contains a pronoun. Figure 3 shows how this
process works. We run the Berkeley Entity Reso-
lution System (Durrett and Klein, 2014) and com-
pute posteriors over possible links for the pronoun.
If the coreference system is sufficiently confident
in its prediction (i.e. maxi pi > α for a speci-
fied threshold α > 1

2 ), we allow ourselves to re-
place the pronoun with the first mention of the en-
tity corresponding to the pronoun’s most likely an-
tecedent. In Figure 3, if the system correctly deter-
mines that Kellogg is the correct antecedent with
high probability, we enable the first replacement
shown there, which is used if u2 is included the
summary without u1.5

As shown in the ILP in Figure 1, we instanti-
ate corresponding pronoun replacement variables
xREF where xREF

ij = 1 implies that the jth pronoun
in the ith sentence should be replaced in the sum-
mary. We use a candidate pronoun replacement
if and only if the pronoun’s corresponding (pre-
dicted) entity hasn’t been mentioned previously in
the summary.6 Because we are generally replac-
ing pronouns with longer mentions, we also need
to modify the length constraint to take this into
account. Finally, we incorporate features on pro-
noun replacements in the objective, which helps
the model learn to prefer pronoun replacements
that help it to more closely match the human sum-
maries.

2.2.2 Pronoun Antecedent Constraints
Explicitly replacing pronouns is risky: if the coref-
erence system makes an incorrect prediction, the
intended meaning of the summary may be dam-
aged. Fortunately, the coreference model’s pos-
terior probabilities have been shown to be well-
calibrated (Nguyen and O’Connor, 2015), mean-
ing that cases where it is likely to make errors are
signaled by flatter posterior distributions. In this
case, we enable a more conservative set of con-
straints that include additional content in the sum-
mary to make the pronoun reference clear without
explicitly replacing it. This is done by requiring
the inclusion of any textual unit which contains

5If the proposed replacement is a proper mention, we re-
place the pronoun just with the subset of the mention that con-
stitutes a named entity (rather than the whole noun phrase).
We control for possessive pronouns by deleting or adding ’s
as appropriate.

6Such a previous mention may be a pronoun; however,
note that that pronoun would then be targeted for replacement
unless its antecedent were included somehow.

possible pronoun references whose posteriors sum
to at least a threshold parameter β. Figure 3 shows
that this constraint can force the inclusion of u1 to
provide additional context. Although this could
still lead to unclear pronouns if text is stitched to-
gether in an ambiguous or even misleading way, in
practice we observe that the textual units we force
to be added almost always occur very recently be-
fore the pronoun, giving enough additional context
for a human reader to figure out the pronoun’s an-
tecedent unambiguously.

2.3 Features

The features in our model (see Figure 1) consist of
a set of surface indicators capturing mostly lex-
ical and configurational information. Their pri-
mary role is to identify important document con-
tent. The first three types of features fire over tex-
tual units, the last over pronoun replacements.

Lexical These include indicator features on non-
stopwords in the textual unit that appear at least
five times in the training set and analogous POS
features. We also use lexical features on the first,
last, preceding, and following words for each tex-
tual unit. Finally, we conjoin each of these fea-
tures with an indicator of bucketed position in the
document (the index of the sentence containing the
textual unit).

Structural These features include various con-
junctions of the position of the textual unit in the
document, its length, the length of its correspond-
ing sentence, the index of the paragraph it occurs
in, and whether it starts a new paragraph (all val-
ues are bucketed).

Centrality These features capture rough infor-
mation about the centrality of content: they consist
of bucketed word counts conjoined with bucketed
sentence index in the document. We also fire fea-
tures on the number of times of each entity men-
tioned in the sentence is mentioned in the rest of
the document (according to a coreference system),
the number of entities mentioned in the sentence,
and surface properties of mentions including type
and length

Pronoun replacement These target properties
of the pronoun replacement such as its length, its
sentence distance from the current mention, its
type (nominal or proper), and the identity of the
pronoun being replaced.



3 Learning

We learn weights w for our model by training on
a large corpus of documents u paired with ref-
erence summaries y. We formulate our learning
problem as a standard instance of structured SVM
(see Smith (2011) for an introduction). Because
we want to optimize explicitly for ROUGE-1,7 we
define a ROUGE-based loss function that accom-
modates the nature of our supervision, which is in
terms of abstractive summaries y that in general
cannot be produced by our model. Specifically,
we take:

`(xNGRAM,y) = maxx∗ ROUGE-1(x∗,y)− ROUGE-1(xNGRAM,y)

i.e. the gap between the hypothesis’s ROUGE
score and the oracle ROUGE score achievable
under the model (including constraints). Here
xNGRAM are indicator variables that track, for each
n-gram type in the reference summary, whether
that n-gram is present in the system summary.
These are the sufficient statistics for computing
ROUGE.

We train the model via stochastic subgradient
descent on the primal form of the structured SVM
objective (Ratliff et al., 2007; Kummerfeld et al.,
2015). In order to compute the subgradient for a
given training example, we need to find the most
violated constraint on the given instance through a
loss-augmented decode, which for a linear model
takes the form argmaxxw

>f(x)+`(x,y). To do
this decode at training time in the context of our
model, we use an extended version of our ILP in
Figure 1 that is augmented to explicitly track type-
level n-grams:

max
xUNIT,xREF,xNGRAM

[∑
i

[
xUNIT
i (w>f(ui))

]

+
∑
(i,j)

[
xREF
ij (w>f(rij))

]
− `(xNGRAM,y)


subject to all constraints from Figure 1, and

xNGRAM
i = 1 iff an included textual unit or replacement

contains the ith reference n-gram

These kinds of variables and constraints are com-
mon in multi-document summarization systems

7We found that optimizing for ROUGE-1 actually resulted
in a model with better performance on both ROUGE-1 and
ROUGE-2. We hypothesize that this is because framing our
optimization in terms of ROUGE-2 would lead to a less nu-
anced set of constraints: bigram matches are relatively rare
when the reference is a short, abstractive summary, so a loss
function based on ROUGE-2 will express a flatter preference
structure among possible outputs.

that score bigrams (Gillick and Favre, 2009 in-
ter alia). Note that since ROUGE is only com-
puted over non-stopword n-grams and pronoun
replacements only replace pronouns, pronoun re-
placement can never remove an n-gram that would
otherwise be included.

For all experiments, we optimize our objective
using AdaGrad (Duchi et al., 2011) with `1 regu-
larization (λ = 10−8, chosen by grid search), with
a step size of 0.1 and a minibatch size of 1. We
train for 10 iterations on the training data, at which
point held-out model performance no longer im-
proves. Finally, we set the anaphora thresholds
α = 0.8 and β = 0.6 (see Section 2.2). The val-
ues of these and other hyperparameters were de-
termined on a held-out development set from our
New York Times training data. All ILPs are solved
using GLPK version 4.55.

4 Experiments

We primarily evaluate our model on a roughly
3000-document evaluation set from the New York
Times Annotated Corpus (Sandhaus, 2008). We
also investigate its performance on the RST Dis-
course Treebank (Carlson et al., 2001), but be-
cause this dataset is only 30 documents it pro-
vides much less robust estimates of performance.8

Throughout this section, when we decode a docu-
ment, we set the word budget for our summarizer
to be the same as the number of words in the corre-
sponding reference summary, following previous
work (Hirao et al., 2013; Yoshida et al., 2014).

4.1 Preprocessing
We preprocess all data using the Berkeley Parser
(Petrov et al., 2006), specifically the GPU-
accelerated version of the parser from Hall et al.
(2014), and the Berkeley Entity Resolution Sys-
tem (Durrett and Klein, 2014). For RST discourse
analysis, we segment text into EDUs using a semi-
Markov CRF trained on the RST treebank with
features on boundaries similar to those of Hernault
et al. (2010), plus novel features on spans includ-
ing span length and span identity for short spans.

To follow the conditions of Yoshida et al. (2014)
as closely as possible, we also build a discourse
parser in the style of Hirao et al. (2013), since
their parser is not publicly available. Specifically,

8Tasks like DUC and TAC have focused on multi-
document summarization since around 2003, hence the lack
of more standard datasets for single-document summariza-
tion.



Article on Speak-Up, program begun by Westchester County Office for the Aging to bring together elderly and college students.

National Center for Education Statistics reports students in 4th, 8th and 12th grades scored modestly higher on American history test than five 
years earlier. Says more than half of high school seniors still show poor command of basic facts. Only 4th graders made any progress in civics 
test. New exam results are another ingredient in debate over renewing Pres Bush’s signature No Child Left Behind Act.

Filtered article: 

NYT50 article:

Summary: 

Summary: 

Federal officials reported yesterday that students in 4th, 8th and 12th grades had scored modestly higher on an American history test 
than five years earlier, although more than half of high school seniors still showed poor command of basic facts like the effect of the 
cotton gin on the slave economy or the causes of the Korean War. Federal officials said they considered the results encouraging because at each 
level tested, student performance had improved since the last time the exam was administered, in 2001. “In U.S. history there were higher scores 
in 2006 for all three grades,” said Mark Schneider, commissioner of the National Center for Education Statistics, which administers the test, at a 
Boston news conference that the Education Department carried by Webcast. The results were less encouraging on a national civics test, on 
which only fourth graders made any progress. The best results in the history test were also in fourth grade, where 70 percent of students 
attained the basic level of achievement or better. The test results in the two subjects are likely to be closely studied, because Congress is 
considering the renewal of President Bush's signature education law, the No Child Left Behind Act. A number of studies have shown that 
because No Child Left Behind requires states…

Long before President Bush's proposal to rethink Social Security became part of the national conversation, Westchester County came up with 
its own dialogue to bring issues of aging to the forefront. Before the White House Conference on Aging scheduled in October, the county's 
Office for the Aging a year ago started Speak-Up, which stands for Student Participants Embrace Aging Issues of Key Concern, to reach 
students in the county's 13 colleges and universities. Through a variety of events to bring together the elderly and college students, 
organizers said they hoped to have by this spring a series of recommendations that could be given to Washington…

Figure 4: Examples of an article kept in the NYT50 dataset (top) and an article removed because the summary is too short.
The top summary has a rich structure to it, corresponding to various parts of the document (bolded) and including some text
that is essentially a direct extraction.
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Figure 5: Counts on a 1000-document sample of how fre-
quently both a document prefix baseline and a ROUGE ora-
cle summary contain sentences at various indices in the docu-
ment. There is a long tail of useful sentences later in the doc-
ument, as seen by the fact that the oracle sentence counts drop
off relatively slowly. Smart selection of content therefore has
room to improve over taking a prefix of the document.

we use the first-order projective parsing model of
McDonald et al. (2005) and features from Soricut
and Marcu (2003), Hernault et al. (2010), and Joty
et al. (2013). When using the same head anno-
tation scheme as Yoshida et al. (2014), we out-
perform their discourse dependency parser on un-
labeled dependency accuracy, getting 56% as op-
posed to 53%.

4.2 New York Times Corpus

We now provide some details about the New York
Times Annotated corpus. This dataset contains

110,540 articles with abstractive summaries; we
split these into 100,834 training and 9706 test ex-
amples, based on date of publication (test is all
articles published on January 1, 2007 or later).
Examples of two documents from this dataset
are shown in Figure 4. The bottom example
demonstrates that some summaries are extremely
short and formulaic (especially those for obituar-
ies and editorials). To counter this, we filter the
raw dataset by removing all documents with sum-
maries that are shorter than 50 words. One benefit
of filtering is that the length distribution of our re-
sulting dataset is more in line with standard sum-
marization evaluations like DUC; it also ensures a
sufficient number of tokens in the budget to pro-
duce nontrivial summaries. The filtered test set,
which we call NYT50, includes 3,452 test exam-
ples out of the original 9,706.

Interestingly, this dataset is one where the clas-
sic document prefix baseline can be substantially
outperformed, unlike in some other summariza-
tion settings (Penn and Zhu, 2008). We show this
fact explicitly in Section 4.3, but Figure 5 provides
additional analysis in this regard. We compute or-
acle ROUGE-1 sentence-extractive summaries on
a 1000-document subset of the training set and
look at where the extracted sentences lie in the
document. While they certainly skew earlier in
the document, they do not all fall within the doc-



R-1 ↑ R-2 ↑ CG ↑ UP ↓
Baselines

First sentences 28.6 17.3 8.21 0.28
First k words 35.7 21.6 − −

Bigram Frequency 25.1 9.8 − −
Past work

Tree Knapsack 34.7 19.6 7.20 0.42
This work

Sentence extraction 38.8 23.5 7.93 0.32
EDU extraction 41.9 25.3 6.38 0.65

Full 42.2 25.9 *†7.52 *0.36
Ablations from Full

No Anaphoricity 42.5 26.3 7.46 0.44
No Syntactic Compr 41.1 25.0 − −

No Discourse Compr 40.5 24.7 − −

Table 1: Results on the NYT50 test set (documents with sum-
maries of at least 50 tokens) from the New York Times Anno-
tated Corpus (Sandhaus, 2008). We report ROUGE-1 (R-1),
ROUGE-2 (R-2), clarity/grammaticality (CG), and number of
unclear pronouns (UP) (lower is better). On content selection,
our system substantially outperforms all baselines, our imple-
mentation of the tree knapsack system (Yoshida et al., 2014),
and learned extractive systems with less compression, even
an EDU-extractive system that sacrifices grammaticality. On
clarity metrics, our final system performs nearly as well as
sentence-extractive systems. The symbols * and † indicate
statistically significant gains compared to No Anaphoricity
and Tree Knapsack (respectively) with p < 0.05 according to
a bootstrap resampling test. We also see that removing either
syntactic or EDU-based compressions decreases ROUGE.

ument prefix summary. One reason for this is that
many of the articles are longer-form pieces that be-
gin with a relatively content-free lede of several
sentences, which should be identifiable with lexi-
cosyntactic indicators as are used in our discrimi-
native model.

4.3 New York Times Results
We evaluate our system along two axes: first, on
content selection, using ROUGE9 (Lin and Hovy,
2003), and second, on clarity of language and ref-
erential structure, using annotators from Amazon
Mechanical Turk. We follow the method of Gillick
and Liu (2010) for this evaluation and ask Turkers
to rate a summary on how grammatical it is using
a 10-point Likert scale. Furthermore, we ask how
many unclear pronouns references there were in
the text. The Turkers do not see the original docu-
ment or the reference summary, and rate each sum-
mary in isolation. Gillick and Liu (2010) showed
that for linguistic quality judgments (as opposed to
content judgments), Turkers reproduced the rank-
ing of systems according to expert judgments.

To speed up preprocessing and training time
9We use the ROUGE 1.5.5 script with the following com-

mand line arguments: -n 2 -x -m -s. All given results
are macro-averaged recall values over the test set.

on this corpus, we further restrict our training set
to only contain documents with fewer than 100
EDUs. All told, the final system takes roughly 20
hours to make 10 passes through the subsampled
training data (22,000 documents) on a single core
of an Amazon EC2 r3.4xlarge instance.

Table 1 shows the results on the NYT50 cor-
pus. We compare several variants of our sys-
tem and baselines. For baselines, we use two
variants of first k: one which must stop on a
sentence boundary (which gives better linguistic
quality) and one which always consumes k to-
kens (which gives better ROUGE). We also use
a heuristic sentence-extractive baseline that maxi-
mizes the document counts (term frequency) of bi-
grams covered by the summary, similar in spirit to
the multi-document method of Gillick and Favre
(2009).10 We also compare to our implementa-
tion of the Tree Knapsack method of Yoshida et al.
(2014), which matches their results very closely
on the RST Discourse Treebank when discourse
trees are controlled for. Finally, we compare sev-
eral variants of our system: purely extractive sys-
tems operating over sentences and EDUs respec-
tively, our full system, and ablations removing ei-
ther the anaphoricity component or parts of the
compression module.

In terms of content selection, we see that all of
the systems that incorporate end-to-end learning
(under “This work”) substantially outperform our
various heuristic baselines. Our full system using
the full compression scheme is substantially better
on ROUGE than ablations where the syntactic or
discourse compressions are removed. These im-
provements reflect the fact that more compression
options give the system more flexibility to include
key content words. Removing the anaphora res-
olution constraints actually causes ROUGE to in-
crease slightly (as a result of granting the model
flexibility), but has a negative impact on the lin-
guistic quality metrics.

On our linguistic quality metrics, it is no sur-
prise that the sentence prefix baseline performs
the best. Our sentence-extractive system also does
well on these metrics. Compared to the EDU-
extractive system with no constraints, our con-
strained compression method improves substan-
tially on both linguistic quality and reduces the

10Other heuristic multi-document approaches could be
compared to, e.g. He et al. (2012), but a simple term fre-
quency method suffices to illustrate how these approaches can
underperform in the single-document setting.



ROUGE-1 ROUGE-2
First k words 23.5 8.3

Tree Knapsack 25.1 8.7
Full 26.3 8.0

Table 2: Results for RST Discourse Treebank (Carlson et al.,
2001). Differences between our system and the Tree Knap-
sack system of Yoshida et al. (2014) are not statistically sig-
nificant, reflecting the high variance in this small (20 docu-
ment) test set.

number of unclear pronouns, and adding the pro-
noun anaphora constraints gives further improve-
ment. Our final system is approaches the sentence-
extractive baseline, particularly on unclear pro-
nouns, and achieves substantially higher ROUGE
score.

4.4 RST Treebank

We also evaluate on the RST Discourse Tree-
bank, of which 30 documents have abstractive
summaries. Following Hirao et al. (2013), we use
the gold EDU segmentation from the RST corpus
but automatic RST trees. We break this into a 10-
document development set and a 20-document test
set. Table 2 shows the results on the RST cor-
pus. Our system is roughly comparable to Tree
Knapsack here, and we note that none of the differ-
ences in the table are statistically significant. We
also observed significant variation between multi-
ple runs on this corpus, with scores changing by
1-2 ROUGE points for slightly different system
variants.11

5 Conclusion

We presented a single-document summarization
system trained end-to-end on a large corpus. We
integrate a compression model that enforces gram-
maticality as well as pronoun anaphoricity con-
straints that enforce coherence. Our system im-
proves substantially over baseline systems on
ROUGE while still maintaining good linguistic
quality.

Our system and models are publicly available at
http://nlp.cs.berkeley.edu

11The system of Yoshida et al. (2014) is unavailable, so we
use a reimplementation. Our results differ from theirs due
to having slightly different discourse trees, which cause large
changes in metrics due to high variance on the test set.
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